skip to main content


Search for: All records

Creators/Authors contains: "Yang, Zhaohui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 24, 2025
  2. Abstract

    In this work, we consider a federated learning model in a wireless system with multiple base stations and inter‐cell interference. We apply a differentially private scheme to transmit information from users to their corresponding base station during the learning phase. We show the convergence behavior of the learning process by deriving an upper bound on its optimality gap. Furthermore, we define an optimization problem to reduce this upper bound and the total privacy leakage. To find the locally optimal solutions of this problem, we first propose an algorithm that schedules the resource blocks and users. We then extend this scheme to reduce the total privacy leakage by optimizing the differential privacy artificial noise. We apply the solutions of these two procedures as parameters of a federated learning system where each user is equipped with a classifier and communication cells have mostly fewer resource blocks than numbers of users. The simulation results show that our proposed scheduler improves the average accuracy of the predictions compared with a random scheduler. In particular, the results show an improvement of over 6%. Furthermore, its extended version with noise optimizer significantly reduces the amount of privacy leakage.

     
    more » « less
  3. null (Ed.)
    In this paper, the problem of audio semantic communication over wireless networks is investigated. In the considered model, wireless edge devices transmit large-sized audio data to a server using semantic communication techniques. The techniques allow devices to only transmit audio semantic information that captures the contextual features of audio signals. To extract the semantic information from audio signals, a wave to vector (wav2vec) architecture based autoencoder is proposed, which consists of convolutional neural networks (CNNs). The proposed autoencoder enables high-accuracy audio transmission with small amounts of data. To further improve the accuracy of semantic information extraction, federated learning (FL) is implemented over multiple devices and a server. Simulation results show that the proposed algorithm can converge effectively and can reduce the mean squared error (MSE) of audio transmission by nearly 100 times, compared to a traditional coding scheme. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)